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Abstract

The difficulties that typically prevent numerical solutions from being obtained to finite-energy, two-body, bound-

state Bethe–Salpeter equations can often be overcome by expanding solutions in terms of basis functions that obey the

boundary conditions. The method discussed here for solving the Bethe–Salpeter equation requires only that the

equation can be Wick rotated and that the two angular variables associated with rotations in three-dimensional space

can be separated, properties that are possessed by many Bethe–Salpeter equations including all two-body, bound-state

Bethe–Salpeter equations in the ladder approximation. The efficacy of the method is demonstrated by calculating finite-

energy solutions to the partially-separated Bethe–Salpeter equation describing the Wick–Cutkosky model when the

constituents do not have equal masses.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Bethe–Salpeter equation [1] is a covariant equation that, in some sense, is a relativistic generalization

of the Schr€odinger equation although it is developed from relativistic quantum field theory rather than

from relativistic quantum mechanics. One particularly noteworthy feature of the equation is that inter-

actions are retarded so that there is no action at a distance. While the Bethe–Salpeter equation is appro-

priate for studying properties of relativistic bound-state systems, heretofore its use has been limited

because, even numerically, the two-body, bound-state equation has been exceedingly difficult to solve [2].
For this reason various approximations such as the Blankenbecler–Sugar approximation [3] or the in-

stantaneous approximation [1,4] are often made that reduce the covariant equation in four-dimensional

space–time to a more tractable, approximately-covariant equation in three dimensions.
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If there are no external fields, the Bethe–Salpeter equation is rotationally invariant in three-dimensional

space so two angular variables can be separated. Furthermore, at least in the ladder approximation, the

equation can beWick rotated (analytically continued to Euclidean space) [5], which eliminates the singularity
in the kernel andmakes the equationmuch easier to solve.When a Bethe–Salpeter equation has been partially

separated and Wick-rotated, it is still an integral or differential equation in two variables. The numerical

method discussed here offers the possibility of obtaining finite-energy solutions even when the equation is not

completely separable, which is usually the case, and does not require that the masses of the two bound quanta

be equal.

With several exceptions, solutions to the two-body, bound-state Bethe–Salpeter equation have been

obtained in the ladder approximation only when the equation is completely separable or when the masses of

the two bound quanta are equal. The Wick–Cutkosky model, which consists of two unequal-mass scalars
interacting via a massless scalar, is completely separable [5–10], and the eigenvalue equation for the cou-

pling constant can be solved numerically [6,11,12]. In the zero-energy limit the Bethe–Salpeter equation is

rotationally invariant in four-dimensional space–time and is therefore separable. Sometimes the completely

separated equation has been solved numerically. For example, Brennan [13] obtained zero-energy, bound-

state solutions for two unequal-mass fermions interacting via a massive scalar. In the ladder approximation

the author [14,15] calculated zero-energy solutions for a spin-0 and spin-1/2 constituent with masses that

are not equal and are bound by scalar electrodynamics.

Even if the equation is not completely separable, finite-energy, two-body, bound-state solutions can
occasionally be obtained if the masses of the two bound quanta are equal. For example, Gammel and

Menzel [16] determined the bound-state solutions of two oppositely charged fermions that interact through

minimal electrodynamics. Schwartz [17] and Nieuwenhuis and Tjon [18] determined bound-state solutions

for two scalars that interact via a third, massive scalar. When the two bound scalars have unequal masses,

finite-energy solutions were first obtained by Kaufmann [19] and later by Setô and Fukui [20], who reduce

the Bethe–Salpeter equation to an infinite system of integral equations in one variable that are solved

numerically. In all cases, before the equations are solved, they are Wick-rotated [5] to eliminate the sin-

gularity in the kernel.
Because the energy appears more than once in the Bethe–Salpeter equation, a Hamiltonian does not

exist, and the equation is an eigenvalue equation for the coupling constant instead of the energy. The

equation is solved by specifying a value for the energy and then, for the chosen value of energy, calculating

values of coupling constant that satisfy the equation. Although the coupling constants are real in the

Lagrangian, there are apparently solutions to the Bethe–Salpeter equation with complex values of the

coupling constant. While the Wick–Cutkosky model [5,6] has only real values for the coupling constant,

Kaufmann [19] considered two scalars interacting with a third, massive scalar and found complex values.

Also, for the same equation Setô and Fukui [20] found that ‘‘there exists a strong indication that complex
eigenvalues appear. . .’’ Here attention is restricted to solutions of the Bethe–Salpeter equation with real

values of the coupling constants, which are the more interesting physically.

Numerical solutions to the bound-state, Bethe–Salpeter equation are obtained in five steps:

(1) The singularity in the kernel is removed by a Wick rotation [5], which is always possible in the ladder

approximation, and is accomplished by making the substitution p0 ! ip0 while rotating the path of inte-

gration 90� counterclockwise in the complex p0-plane.
(2) Two angular variables are separated, which is possible because the Bethe–Salpeter equation is ro-

tationally invariant in three-dimensional space provided there are no external fields. The resulting equation
for the Bethe–Salpeter ‘‘wave function’’ Wðip0; psÞ is an equation in the two variables p0 and ps � jpj. In the

ladder approximation a Wick-rotated, partially-separated Bethe–Salpeter equation is of the form

Kðip0; psÞWðip0; psÞ ¼
g1g2
4p

Z 1

�1
dq0

Z 1

0

dqsV ðip0; ps; iq0; qsÞWðiq0; qsÞ: ð1:1Þ
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The above equation actually represents NEQ equations, where NEQ ¼ 1 if both constituent quanta have spin

zero and NEQ > 1 otherwise. Thus, Kðip0; psÞ and the kernel V ðip0; ps; iq0; qsÞ are both NEQ � NEQ matrix

functions.
(3) Zero-energy solutions are calculated. In the zero-energy limit the Bethe–Salpeter equation is invariant

under rotations in four-dimensional space–time, and is, therefore, completely separable. Zero-energy so-

lutions are expanded in terms of basis functions that consist of the product of a set of basis functions

fgiðjpjÞg that depend on the magnitude of the Euclidean four-momentum jpj ¼ ðp20 þ p2s Þ
1=2

and hyper-

spherical harmonics in four-dimensional, Euclidean space–time. To obtain solutions, each of the basis

functions giðjpjÞ must (very nearly) obey the boundary conditions, which are readily calculated [15]. Each

basis function need not obey the boundary conditions exactly provided that a linear combination of the

basis functions yields a solution that does.
(4) Finite-energy solutions Wðip0; psÞ are expanded in terms of a set of basis functions {gjðp0; psÞ},

Wðip0; psÞ ¼
XNB

j¼1

cjgjðp0; psÞ: ð1:2Þ

Two conditions are imposed on the basis functions: (a) The basis functions must (very nearly) obey the

boundary conditions. (b) A basis system must be chosen that, in the zero-energy limit, devolves to the basis

system that yields zero-energy solutions. Knowledge of a basis system that yields zero-energy solutions

provides guidance in constructing a more general basis system required to represent finite-energy solutions.

(5) Finally, the partially separated Bethe–Salpeter equation (1.1) is discretized by converting it into a
generalized matrix eigenvalue equation for the coupling constant. One additional condition is imposed on

the generalized matrix eigenvalue equation: In the zero-energy limit the generalized matrix eigenvalue

equation that yields finite-energy solutions must devolve to the generalized matrix eigenvalue equation that

yields zero-energy solutions. Discretization can be accomplished, for example, using the Rayleigh–Ritz–

Galerkin method [21,22] or the method of orthogonal polynomials [14]. After expressing the solution

Wðip0; psÞ in terms of basis functions, both sides of (1.1) are multiplied by f ðp0; psÞgiðp0; psÞy and then in-

tegrated over the variables p0 and ps. The function f ðp0; psÞ may be omitted or may be chosen so that that

the matrices are symmetric or have some other desirable property. The integral equation (1.1) has then been
converted into a generalized matrix eigenvalue equation

Kc ¼ g1g2
4p

ðVH þ VAHÞc: ð1:3Þ

In the above equation, c is a column vector with the elements cj that are the expansion coefficients for the

wave function Wðip0; psÞ in (1.2), and the matrices VH and VAH are Hermitian and anti-Hermitian, respec-

tively. Since the Bethe–Salpeter wave function is expressed in terms of NB basis functions as indicated in

(1.2), (1.3) is an ðNEQ � NBÞ � ðNEQ � NBÞ matrix equation.
Because there is no obvious way to force the eigenvalues of (1.3) to be real, in general it has been ex-

tremely difficult to construct a generalized matrix eigenvalue equation that yields real values for g1g2=4p
that are solutions to (1.1). A sufficient condition for obtaining real eigenvalues of a generalized matrix

eigenvalue equation (1.3) is that VAH ¼ 0, K be Hermitian and either K or VH be positive definite. (See, for

example, [23].) In (1.3), K is often Hermitian. But if K is also positive definite, then VAH is usually non-zero,

and if VAH is zero, then neither K nor VH is usually positive definite. And even if an eigenvalue of (1.3)

happens to be real, especially when the basis functions do not obey the boundary conditions, the eigenvalue

typically is not an eigenvalue of the Bethe–Salpeter equation (1.1).
Solutions to some partially separated Bethe–Salpeter equations have been obtained when the masses of

the two constituents are equal because, in this case, the matrix K in (1.3) is both Hermitian and positive

definite, and the matrix VAH vanishes because it is proportional to the difference of the masses of the two
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constituents. For example, for the equal-mass and zero-energy cases, the Bethe–Salpeter equation de-

scribing the Wick–Cutkosky model [5,6] can be converted into a matrix equation of the form (1.3) where

both K and VH are real, symmetric and positive-definite and VAH ¼ 0 because it is proportional to both the
mass difference of the two bound quanta and the energy of the bound state [24].

When a matrix eigenvalue equation is constructed such that the conditions discussed in steps (1)–(5) are

satisfied, all eigenvalues usually are not real. But real eigenvalues are obtained, and almost all real ei-

genvalues are solutions of the original Bethe–Salpeter equation.

To demonstrate the techniques for solving a finite-energy, two-body, bound-state Bethe–Salpeter

equation as well as the effectiveness of the method, finite-energy solutions are calculated for the partially

separated Wick–Cutkosky model when the constituents masses are unequal. Although the equation is

separable and the solutions were originally calculated from a completely separated equation, the method
used here only requires that the two angular variables associated with rotations in three-dimensional space

be separated. The advantage of demonstrating the technique with the Wick–Cutkosky model is that the

complications associated with higher spin are avoided.
2. The Bethe–Salpeter equation for the Wick–Cutkosky model

The Wick–Cutkosky model [5,6] consists of two scalars with respective masses m1 and m2 that interact
with a third massless scalar. In the ladder approximation, the Bethe–Salpeter equation that describes a

bound state of the two massive scalars is

fðpl þ nKlÞðpl þ nKlÞ � m2
1gf½pm þ ðn� 1ÞKm�½pm þ ðn� 1ÞKm� � m2

2gvKðpÞ

¼ ik
p2

Z 1

�1

d4q

ðp � qÞ2 þ i�
vKðqÞ; ð2:1Þ

where the notation is that of [25]. The parameter 0 < n < 1 in the above equation is associated with the

definition of the center-of-mass variables, and Kl is the four momentum of the bound state. After a Wick

rotation [5], in the rest frame of the center of mass where Kl ¼ ðE; 0; 0; 0Þ, the Bethe–Salpeter equation

takes the form,

fðip0 þ nEÞ2 � p2 � m2
1gf½ip0 þ ðn� 1ÞE�2 � p2 � m2

2gvEðip0; pÞ

¼ k
p2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞ vEðiq0; qÞ; ð2:2Þ

where ðp � qÞ � ðp � qÞ � ðp0 � q0Þ2 þ ðpi � qiÞðpi � qiÞ is the Euclidean scalar product.

Dimensionless variables are introduced by defining m1 � mð1þ DÞ, m2 � mð1� DÞ, dimensionless mo-

mentum p0 � p=m and dimensionless energy � � E=2m. When written in terms of dimensionless parameters,
the above equation becomes

fðip0 þ 2n�Þ2 � p2 � ð1þ DÞ2gf½ip0 þ 2ðn� 1Þ��2 � p2 � ð1� DÞ2gvEðip0; pÞ

¼ k
p2m2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞ vEðiq0; qÞ; ð2:3Þ

where primes have been omitted since all momenta are now dimensionless.

For compactness of notation, it is convenient to write the coefficient of vEðip0; pÞ on the left-hand side of

(2.3) explicitly in terms of its real and imaginary parts,
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fðip0 þ 2n�Þ2 � p2 � ð1þ DÞ2gf½ip0 þ 2ðn� 1Þ��2 � p2 � ð1� DÞ2g � DR þ iDI : ð2:4Þ

From (2.4) it immediately follows that

DR ¼ ½p20 þ p2 � 4n2�2 þ ð1þ DÞ2�½p20 þ p2 � 4ð1� nÞ2�2 þ ð1� DÞ2� þ 16nð1� nÞ�2p20; ð2:5aÞ
DI ¼ 4�p0f�n½p20 þ p2 � 4ð1� nÞ2�2 þ ð1� DÞ2� þ ð1� nÞ½p20 þ p2 � 4n2�2 þ ð1þ DÞ2�g: ð2:5bÞ

Because DI vanishes both in the zero-energy limit, � ¼ 0, and, if n ¼ 1=2, when the two constituents have

equal masses, D ¼ 0, it is relatively easy to obtain solutions in these two limits.

Since the coupling constant k is real in the Lagrangian, the physically interesting values of k are real.

Actually, for the Wick–Cutkosky model all eigenvalues are real [6,11,12] although for other Bethe–Salpeter

equations, solutions may exist for complex values of the coupling constant as discussed previously [19,20].

Writing vEðip0; pÞ in terms of real and imaginary parts,

vEðip0; pÞ � vRðp0; pÞ þ ivIðp0; pÞ; ð2:6Þ

and noting that the real and imaginary parts of (2.3) must vanish independently, yields the following two

equations:

DRvRðp0; pÞ � DIvIðp0; pÞ ¼
k

p2m2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞ vRðq0; qÞ; ð2:7aÞ
DIvRðp0; pÞ þ DRvIðp0; pÞ ¼
k

p2m2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞ vIðq0; qÞ: ð2:7bÞ

Adding (2.7a) and (2.7b),

DR½vRðp0; pÞ þ vIðp0; pÞ� þ DI ½vRðp0; pÞ � vIðp0; pÞ�

¼ k
p2m2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞ ½vRðq0; qÞ þ vIðq0; qÞ�: ð2:8Þ

From (2.3) it immediately follows that if vEðip0; pÞ is a solution, then v�Eð�ip0; pÞ is a solution with the

same eigenvalue. Thus, without loss of generality it is possible to choose

vEðip0; pÞ ¼ v�Eð�ip0; pÞ: ð2:9Þ

Taking the complex conjugate of (2.9),

v�Eðip0; pÞ ¼ vEð�ip0; pÞ: ð2:10Þ

Therefore, the real and imaginary parts of the solution can be chosen, respectively, to be even and odd
functions of p0.

Defining

wðp0; pÞ � vRðp0; pÞ þ vIðp0; pÞ; ð2:11Þ

it immediately follows that

wð�p0; pÞ � vRðp0; pÞ � vIðp0; pÞ: ð2:12Þ

Consequently (2.8) can be rewritten as
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DRwðp0; pÞ þ DIwð�p0; pÞ ¼
k

p2m2

Z 1

�1

d4q

ðp � qÞ � ðp � qÞwðq0; qÞ; ð2:13Þ

which is in a form that is convenient to solve numerically.
3. Numerical solutions to the partially separated, Wick–Cutkosky model

Since (2.13) is manifestly invariant under rotations in three-dimensional space, the angular dependence

associated with such rotations separates. The wave function wðp0; pÞ can be written in the form

wðp0; pÞ ¼ F ðp0; jpjÞY ‘
mðh;/Þ; ð3:1Þ

where Y ‘
mðh;/Þ is a spherical harmonic. The integration over the two angular variables on the right-hand

side of (2.13) can be performed analytically using Hecke�s theorem [26], and the angular dependence of the

solution then separates. Unfortunately, with this approach the remaining kernel is an associated Legendre

function containing a logarithmic singularity that is difficult to integrate over numerically [27]. Further-

more, the two remaining integrations on the right-hand side of (2.13) must be performed numerically.

An easier method for solving (2.13) is achieved by first rewriting the equation in terms of spherical

coordinates in four-dimensional, Euclidean space–time [18,28]:

p0 ¼ jpj cos h1; pz ¼ jpj sin h1 cos h2;
px ¼ jpj sin h1 sin h2 sin/; py ¼ jpj sin h1 sin h2 cos/:

ð3:2Þ

The four-momentum ql is written similarly in terms of primed angles.

The solution wðp0; pÞ is then expressed as a series expansion in terms of hyperspherical harmonics

P ð2Þ
k;‘ ðcos h1ÞY ‘

mðh2;/Þ in four-dimensional, Euclidean space–time. Defining z � cos h1, the spherical function
P ð2Þ
k;‘ ðzÞ is given by [29]

P ð2Þ
k;‘ ðzÞ ¼ ð1� z2Þ‘=2 d‘

dz‘
C1

k ðzÞ; ð3:3Þ

where C1
k ðzÞ is a Gegenbauer polynomial. Now C1

k ðzÞ is an even or odd function of z if the integer k is even

or odd, respectively. From (3.3) it then follows that P ð2Þ
k;‘ is an even or odd function of cos h1 if k � ‘ is

respectively, an even or odd integer. Recalling that vRðp0; pÞ and vIðp0; pÞ are, respectively, even and odd
functions of p0, implying that they are also, respectively, even and odd functions of cos h1, zero-energy
solutions can be obtained from expansions of the form

vRðp0; pÞzero-energy ¼
XNp

n¼1

gn GnðjpjÞP ð2Þ
‘þi;‘ðcos h1ÞY ‘

mðh2;/Þ; ð3:4aÞ
vIðp0; pÞzero-energy ¼
XNp

n¼1

gn GnðjpjÞP ð2Þ
‘þ1þi;‘ðcos h1ÞY ‘

mðh2;/Þ: ð3:4bÞ

In the above expansions, gn is an expansion coefficient, the index i ¼ 0; 2; . . . is an even integer and {GnðjpjÞ}
is a set of basis functions, each of which (very nearly) obeys the boundary conditions.

A generalization of the zero-energy basis system (3.4) that is suitable for calculating finite-energy so-

lutions is
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vRðp0; pÞ ¼
XNp

n¼1

XKmax

k¼‘;‘þ2;...

gn;kGnðjpjÞP ð2Þ
k;‘ ðcos h1ÞY ‘

mðh2;/Þ; ð3:5aÞ
vIðp0; pÞ ¼
XNp

n¼1

XKmax

k¼‘þ1;‘þ3;...

gn;kGnðjpjÞP ð2Þ
k;‘ ðcos h1ÞY ‘

mðh2;/Þ: ð3:5bÞ

The values of the index k in (3.5) are chosen so that vRðp0; pÞ and vIðp0; pÞ are, respectively, even and odd

functions of cos h1. In the above expansions, gn;k is an expansion coefficient and {GnðjpjÞ} is a set of basis

functions, each of which (very nearly) obeys the boundary conditions and will be specified later. Recalling

that wðp0; pÞ ¼ vRðp0; pÞ þ vIðp0; pÞ and using (3.5),

wðp0; pÞ ¼
XNp

n¼1

XKmax

k¼‘;‘þ1;...

gn;kGnðjpjÞP ð2Þ
k;‘ ðcos h1ÞY ‘

mðh2;/Þ: ð3:6Þ

In the zero-energy limit, the angular dependence of the solution separates and only vRðp0; pÞ or vIðp0; pÞ is
nonzero. Thus, zero-energy solutions can be obtained from (3.6) by choosing one value of the parameter

k ¼ ‘; ‘þ 1; . . ., with each different value of k yielding different solutions. As a consequence, in the zero-
energy limit the basis system (3.6) devolves to a suitable basis system for obtaining zero-energy solutions.

There are three advantages to seeking solutions of the form (3.6) instead of (3.1): (1) After using Hecke�s
theorem [26] to perform the three angular integrations analytically, the remaining kernel does not contain a

logarithmic singularity. (2) In (2.13) only one integration must be performed numerically instead of two. (3)

The basis functions have the correct angular dependence for zero-energy solutions so that fewer angular

terms are required to obtain accurate, finite-energy solutions when the states are tightly bound.

Substituting (3.6) into (2.13),

XNp

n¼1

XKmax

k¼‘;‘þ1;...

gn;kGnðjpjÞ½DRP
ð2Þ
k;‘ ðcos h1Þ þ DIP

ð2Þ
k;‘ ð� cos h1Þ�Y ‘

mðh2;/Þ

¼ k
p2m2

XNp

n¼1

XKmax

k¼‘;‘þ1;...

gn;k

Z 1

0

djqjjqj3GnðjqjÞ �
Z

dX0
ð3Þ

ðp2 þ q2 � 2pq cosHÞ P
ð2Þ
k;‘ ðcos h

0
1ÞY ‘

mðh
0
2;/

0Þ; ð3:7Þ

where H is the angle between the four-vectors p and q. Using Hecke�s theorem [26] to perform the angular

integration (all necessary formulas are in the appendix of [29]),

XNp

n¼1

XKmax

k¼‘;‘þ1;...

gn;kGnðjpjÞ½DRP
ð2Þ
k;‘ ðcos h1Þ þ DIP

ð2Þ
k;‘ ð� cos h1Þ�Y ‘

mðh2;/Þ

¼ k
p2m2

XNp

n¼1

XKmax

k¼‘;‘þ1;...

gn;k

Z 1

0

djqjjqj3GnðjqjÞKð2Þ
k ðjpj; jqjÞP ð2Þ

k;‘ ðcos h1ÞY ‘
mðh2;/Þ: ð3:8Þ

The function Kð2Þ
k ðjpj; jqjÞ is [26,29],

Kð2Þ
k ðjpj; jqjÞ ¼

2 p2

jpjjqjðkþ1Þ
jqj
jpj

� �kþ1

if jqj6 jpj;
2 p2

jpjjqjðkþ1Þ
jpj
jqj

� �kþ1

if jpj6 jqj:

8><
>: ð3:9Þ

The dependence on the angular variables h2 and / separates as it must.
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To determine the boundary conditions, the parameters g0 and g1 must be calculated that satisfy

GnðjpjÞ���!
jpj!0

jpjg0 ; ð3:10aÞ
GnðjpjÞ���!
jpj!1

jpj�g1 : ð3:10bÞ

Once the asymptotic behavior of integrals of the form

IðpÞ ¼
Z 1

0

djqjjqjnGðjqjÞKð2Þ
k ðjpj; jqjÞ; ð3:11Þ

which appears in (3.8), are determined, the boundary conditions are readily calculated. Specifically, the

parameters i0 and i1 must first be calculated that, respectively, satisfy

IðjpjÞ���!
jpj!0

jpji0 ; ð3:12aÞ
IðjpjÞ���!
jpj!1

jpj�i1 : ð3:12bÞ

There are two possible values for the parameter i0 in (3.12a) [15]:

Solution IA : i0 ¼ k; �nþ k þ 16 g0; n� k � 1 < g1; ð3:13aÞ
Solution IB : i0 ¼ g0 þ n� 1; �n� k � 1 < g0 < �nþ k þ 1; n� k � 1 < g1: ð3:13bÞ

Similarly, there are two possible values for the parameter i1 in (3.12b) [15]:

Solution IIA : i1 ¼ k þ 2; �n� k � 1 < g0; nþ k þ 16 g1; ð3:14aÞ
Solution IIB : i1 ¼ g1 � nþ 1; �n� k � 1 < g0; n� k � 1 < g1 < nþ k þ 1: ð3:14bÞ

Using the fact that as jpj ! 0, DR ! constant, DI ! jpj and substituting (3.10a) into (3.8), for Solution

IA it follows that

jpjg0 þ jpjjpjg0 � jpjk: ð3:15Þ

Thus, g0 ¼ k. Because the smallest value of k ¼ ‘,

GnðjpjÞ���!
jpj!0

jpj‘: ð3:16Þ

As can be readily checked, there are no other solutions for g0. Similarly, at large jpj, the only solution is

g1 ¼ k þ 6 so

GnðjpjÞ���!
jpj!1

1

jpj‘þ6
: ð3:17Þ

The knot structure is as follows: There are Np cubic splines in the expansion (3.6) and Np þ 4 momentum

knots TpðiÞ. To determine the momentum knots, Np Chebyshev points xpðiÞ are calculated on the interval

�1 < xpðiÞ < 1,
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xpðiÞ ¼ � cos
ð2i� 1Þp

2Np
; i ¼ 1; 2; . . . ;Np: ð3:18Þ

The momentum knots Tpðiþ 4Þ are then given by

Tpðiþ 4Þ ¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xpðiÞ
1� xpðiÞ

s
þ C00; i ¼ 1; 2; . . . ;Np: ð3:19Þ

The constant C0 is chosen by trial and error to approximately minimize the lowest zero-energy eigenvalue,

and the constant C00 is chosen so that the first knot on the positive jpj-axis is not too close to jpj ¼ 0. The

values C0 ¼ 1:0 and C00 ¼ 0:01 were satisfactory. A knot is placed at the origin, Tpð4Þ ¼ 0, and the three

knots Tpð1Þ, Tpð2Þ and Tpð3Þ are placed on the ‘‘negative’’ jpj axis to allow maximum freedom in con-

structing the solution from splines near jpj ¼ 0. The three knots on the ‘‘negative’’ jpj axis are mirror images

(about the origin) of the first three knots in (3.19). With this choice of knots, the first three splines are finite
at the origin, creating sufficient freedom to construct solutions from splines near jpj ¼ 0.

Angular knots are chosen on the z axis, where z ¼ cos h1, so that numerical integrations can be carried

out over cos h1. Defining Nh � Kmax � ‘þ 1, which is the number of hyperspherical harmonics in the ex-

pansion (3.6) of the solution, arbitrarily, but in analogy with splines, the number of angular knots Tz is
chosen to be Nh þ 4. The angular knots Tzð1Þ ¼ �1, TzðNh þ 4Þ ¼ 1 and the remaining knots are the

Chebyshev points

Thðiþ 1Þ ¼ � cos
ð2i� 1Þp
2ðNh þ 2Þ ; i ¼ 1; 2; . . . ;Nh þ 2: ð3:20Þ

So that the basis functions GnðjpjÞ asymptotically vanish as indicated in Eqs. (3.16) and (3.17), GnðjpjÞ is
chosen as follows:

GnðjpjÞ ¼
jpj‘

aþ jpj2‘þ5
BnðjpjÞ � G‘ðjpjÞBnðjpjÞ; ð3:21Þ

where G‘ðjpjÞ is a convergence function, a is a constant and BnðjpjÞ is a cubic spline [30]. At small jpj,
GnðjpjÞ � jpj‘BnðjpjÞ. Since the splines are also functions of jpj, at small jpj the individual basis functions

GnðjpjÞ do not exactly obey the boundary condition (3.16). However, as jpj ! 0, for each solution the sum

of the first three splines in the expansion (3.6) approaches a constant so that each solution satisfies the

boundary condition exactly. At large jpj, since all splines vanish, the convergence function is chosen to
vanish as 1=jpj‘þ5

, which is one power of jpj slower than the rate in (3.17). But at large jpj, because the last
spline does not decrease exactly as 1=jpj, basis functions very nearly, but do not exactly, satisfy the

boundary condition. Solutions can be obtained that obey the boundary condition exactly at large jpj by
extending momentum knots beyond jpj ¼ 1 [15] just as they were satisfied exactly by extending momentum

knots below jpj ¼ 0. Because solutions decrease so rapidly at large momenta, the value of solutions at very

large jpj has minimal impact on numerical solutions. As a consequence, for a given number of splines, more

accurate solutions are obtained without using a knot structure that extends beyond jpj ¼ 1 and has fewer

splines at small jpj where the solution has most of its support.
To solve (3.8), the dependence on h2 and / is first separated. Then the resulting equation is discretized

using a hybrid method: The angular dependence is discretized using the method of orthogonal polynomials

[14], which requires that the coefficient vanish independently for each of the first Nh spherical functions

P ð2Þ
‘þIh�1;‘

ðzÞ, Ih ¼ 1; . . . ;Nh in the equation. The product of functions that appear in the equation and

spherical functions that appear in the expansion for solutions can be reexpressed as spherical functions,

some of which have a larger first index. As a consequence, although there are Nh different spherical



G.B. Mainland / Journal of Computational Physics 197 (2004) 610–623 619
functions in the expansion for the solution, there are more than Nh different spherical functions in the

equation. Consequently, if a solution is to be obtained, the series must converge. Using the orthogonality

relationship for the spherical functions P ðsÞ
i;j ,Z 1

�1

dzð1� z2Þ
s�1
2 P ðsÞ

i;j ðzÞP
ðsÞ
i0 ;j ðzÞ ¼

pCðiþ jþ sÞ
2s�2ð2iþ sÞCði� jþ 1ÞC2ðs=2Þ

di;i0 ; ð3:22Þ

it follows that multiplying the equation by
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
P ð2Þ
‘þIh�1;‘

ðzÞ and integrating over z achieves the desired

discretization. The momentum dependence is discretized using a modified Rayleigh–Ritz–Galerkin method

[21,22]. Thus (3.8) is converted into a generalized matrix eigenvalue equation of the form Ag ¼ k
m2 Bg, where

the elements of the column vector g are the expansion coefficients gn;k in (3.6), by multiplying (3.8) by

jpjN
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
G‘ðjpjÞBIpðjpjÞP

ð2Þ
‘þIh�1;‘

ðzÞ; ð3:23Þ

and integrating over z and jpj.
The expressions for the matrices Ai;j and Bi;j are, respectively,

Ai;j ¼
Z 1

�1

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p Z 1

0

djpjjpjNG‘ðjpjÞBIpðjpjÞP
ð2Þ
‘þIh�1;‘ðzÞ � ½DRP

ð2Þ
‘þJh�1;‘ðzÞ

þ DIP
ð2Þ
‘þJh�1;‘ð�zÞ�BJpðjpjÞG‘ðjpjÞ; ð3:24aÞ

and

Bi;j ¼ 2

Z 1

�1

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p Z 1

0

djpjjpjðN�1Þ
Z 1

0

djqjjqj2 � G‘ðjpjÞBIpðjpjÞP
ð2Þ
‘þIh�1;‘ðzÞ

� Rðjpj; jqjÞ‘þJh

‘þ Jh
P ð2Þ
‘þJh�1;‘ðzÞBJpðjqjÞG‘ðjqjÞ: ð3:24bÞ

In (3.24b)

Rðjpj; jqjÞ ¼
jqj
jpj if jqj6 jpj;
jpj
jqj if jpj6 jqj:

8<
: ð3:25Þ

As compared with (3.6), indices have been changed in Eqs. (3.23) and (3.24) so that terms are automatically

excluded when i < j in P ð2Þ
i;j . Here Ip ¼ 1; . . . ;Np; Ih ¼ 1; . . . ;Nh and the index i is given by i ¼ NpðIh � 1Þ þ Ip

with a corresponding expression for j. With the aid of the orthogonality relationship (3.22) for spherical

functions, the integral over the variable z in (3.24b) can be performed analytically yielding

Bi;j ¼
pð2‘þ IhÞ!

ð‘þ IhÞðIh � 1Þ!

Z 1

0

djpjjpjðN�1Þ
Z 1

0

djqjjqj2 � G‘ðjpjÞBIpðjpjÞ

� Rðjpj; jqjÞ‘þIh

‘þ Ih
BJpðjqjÞG‘ðjqjÞdIh;Jh : ð3:26Þ

As can be seen from (3.26), if N ¼ 3 the matrix B is both symmetric and positive definite. Also, the

matrix A is symmetric when the quantity DI vanishes, which, from (2.5b), occurs either when the energy is

zero or when the masses of the constituents are equal. But when A and B are both symmetric and at least

one is positive definite, all eigenvalues are real [23], so all eigenvalues are real for the two cases just

mentioned. However, if the energy is finite and the masses are unequal, all eigenvalues of the discretized
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equation are not real, but real eigenvalues are obtained. For the solutions of the discretized equation

corresponding to the lowest six real eigenvalues, which were the only solutions checked, when a sufficient

number of basis functions were used, the solutions to the discretized equation also satisfied the partially
separated Bethe–Salpeter equation.

The disadvantage of choosing N ¼ 3 is that the generalized matrix eigenvalue equation actually rep-

resents the partially separated equation multiplied by jpj3. The factor jpj3 reduces the sensitivity of the

matrix equation to the form of the solutions at small jpj with the result that numerical solutions do not

satisfy the partially separated equation as well in this region. Choosing N ¼ 1 allows accurate solutions to

be calculated for small jpj. Because the same set of solutions is obtained when N ¼ 1 as when N ¼ 3, all

solutions in Tables 1 and 2 are calculated with N ¼ 1.

The solutions obtained from the generalized matrix eigenvalue equation Ag ¼ k
m2 Bg are checked in two

ways: (1) As the number of basis functions GnðjpjÞ and P ð2Þ
i;j ðcos h1Þ are increased, the value of each ei-

genvalue must converge. (2) For each solution the left- and right-hand sides of (3.7) are compared in the

physical region at the center of each rectangle in the grid formed by the angular knots and the mo-

mentum knots. By examining where the left- and right-hand sides of the equation agree least well, de-

ficiencies are revealed and possible remedies can be efficiently tested. In addition, a reliability coefficient

rlhs–rhs [31], which is a statistical measure of how closely the left- and right-hand sides agree at the

Np � ðNh þ 3Þ points, is calculated. If the left- and right-hand sides agree exactly at every point, then

rlhs–rhs ¼ 1.
Table 1 lists values of the coupling constant k=m2 that are calculated in the zero-energy limit (� ¼ 0)

when m1 ¼ 4m2. Since the angular dependence separates in the zero-energy limit, only one angular basis

function P ð2Þ
k;‘ ðcos h1Þ is used (Nh ¼ 1). That single angular basis function is indicated by the value of the

index k ¼ ‘ in the sum (3.6). As the number Np of momentum basis functions GnðjpjÞ is increased, the

calculated values of the coupling constants converge to correct values, and the reliability coefficients

rlhs–rhs approach unity. (The ‘‘exact’’ eigenvalues in Tables 1 and 2 are correct to at least four significant

figures and are calculated numerically using a completely separated form of the Bethe–Salpeter equation

[6].)
Table 2 lists values of the coupling constant k=m2 that are calculated for four values of the square of the

normalized energy �2 � ½E=ðm1 þ m2Þ�2 ¼ 0:1, 0.5, 0.9 and 0.99 when m1 ¼ 4m2. For each energy, the

number Np of momentum basis functions and the number Nh of angular basis functions used in the cal-

culation are listed. As can be seen from Table 2, as the normalized energy � increases from zero to unity

(and the binding energy decreases to zero), even using additional basis functions it becomes increasingly

difficult to obtain accurate eigenvalues. Nevertheless, when �2 ¼ 0:99, the first eigenvalue is readily calcu-

lated with a relative error of a few tenths of a percent, and the first six eigenvalues are all determined with

relative errors less than five percent.
Table 1

Calculated values for the coupling constant k=m2 in the zero-energy limit when m1 ¼ 4m2

k=m2
exact ‘ Np ¼ 5 Np ¼ 10 Np ¼ 20

k=m2
calc rlhs–rhs k=m2

calc rlhs–rhs k=m2
calc rlhs–rhs

1.838 0 1.905 0.9994 1.841 0.999990 1.838 0.99999968

5.000 0 5.775 0.9990 5.035 0.999993 5.000 0.99999972

5.654 1 5.753 0.9989 5.647 0.999996 5.652 0.99999995

9.817 0 11.53 0.9993 9.996 0.999993 9.822 0.99999957

10.43 1 11.71 0.9968 10.42 0.999991 10.42 0.99999989

11.46 2 11.51 0.9988 11.43 0.999986 11.45 0.99999982



Table 2

Calculated values for the coupling constant k=m2 when the energy is finite and m1 ¼ 4m2

k=m2
exact k=m2

calc rlhs–rhs

�2 ¼ 0:1, Np ¼ 20, Nh ¼ 10

1.686 1.686 0.99999973

4.690 4.691 0.99999975

5.156 5.154 0.99999987

9.252 9.264 0.99999954

9.688 9.669 0.99999960

10.42 10.41 0.9999973

�2 ¼ 0:5, Np ¼ 20, Nh ¼ 10

1.052 1.052 0.9999985

3.112 3.111 0.9999966

3.344 3.341 0.9999963

6.174 6.185 0.9999880

6.532 6.493 0.9999865

6.748 6.757 0.9999858

�2 ¼ 0:9, Np ¼ 25, Nh ¼ 20

0.3167 0.3165 0.99985

0.8500 0.8487 0.99973

1.550 1.547 0.99976

1.590 1.586 0.99942

2.534 2.522 0.99899

2.604 2.595 0.99918

�2 ¼ 0:99, Np ¼ 30, Nh ¼ 30

0.0702 0.0700 0.968

0.166 0.164 0.968

0.286 0.273 0.954

0.427 0.415 0.928

0.590 0.613 0.871

0.734 0.718 0.988
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Earlier the author suggested an alternative method [2] for solving finite-energy, two-body, bound-state

Bethe–Salpeter equations and then used the method to obtain solutions to the partially separated Wick–

Cutkosky model. When m1 ¼ 4m2 and �2 ¼ 0:5, the lowest five values of k=m2 calculated in [2] are 1.054,

3.067, 3.440, 5.834 and 6.792. The values obtained in [2] when �2 ¼ 0:9 are 0.3227, 0.9253, 2.161, and 3.077.

Comparing eigenvalues calculated in [2] with those in Table 2, eigenvalues calculated here are more ac-

curate, especially as k=m2 increases and as �2 approaches unity. The specialized basis functions required in

[2] are difficult to calculate numerically and require significant computer time. Thus, the method discussed
here yields more accurate results while utilizing a much less complicated numerical technique that runs

more efficiently.
4. Conclusions

A systematic method is discussed for solving finite-energy, two-body, bound-state Bethe–Salpeter

equations that does not require that the equation be completely separated or that the constituents have
equal masses. To apply the method, an equation must first be Wick-rotated [5] and then the two angular

variables associated with rotations in three-dimensional space must be separated, which is possible for

many two-body, bound-state Bethe–Salpeter equations, including all such equations in the ladder
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approximation. Zero-energy solutions are calculated first: The zero-energy equation is completely separated

by expressing the solution as a product of a hyperspherical harmonic and a function F ðjpjÞ that depends
only on the magnitude jpj ¼ ðp20 þ p2Þ1=2 of the Euclidean four-momentum. The zero-energy solutions are
then calculated by first expanding the function F ðjpjÞ in terms of basis functions that (very nearly) obey the

boundary conditions and discretizing the equation by converting it into a generalized matrix eigenvalue

equation that is solved numerically. It is important to calculate zero-energy solutions first because the basis

functions that yield zero-energy solutions provide a guide for determining the basis functions that yield

finite-energy solutions. Finite-energy solutions are calculated by expanding solutions in terms of basis

functions, each of which is a product of a ‘‘convergence function’’ that typically obeys the boundary

conditions, a hyperspherical harmonic in four-dimensional, Euclidean space and a spline that depends on

the magnitude of the four-dimensional, Euclidean momentum. The basis functions that yield finite-energy
solutions must devolve to the basis functions that yield zero-energy solutions in the zero-energy limit. The

partially separated equation is then discretized and solved numerically by converting it into a generalized

matrix eigenvalue equation. The generalized matrix eigenvalue equation that yields zero-energy solutions

provides guidance in formulating a generalized matrix eigenvalue equation that yields finite-energy solu-

tions, and the latter must devolve to the former in the zero-energy limit. Even though the coupling con-

stants, which are calculated as eigenvalues of the generalized matrix eigenvalue equation, usually cannot all

be forced to be real, real eigenvalues and corresponding solutions are obtained that satisfy the Bethe–

Salpeter equation.
To demonstrate the techniques and utility of the method, when the constituents have unequal masses,

finite- and zero-energy solutions are calculated to the partially separated Bethe–Salpeter equation de-

scribing the Wick–Cutkosky model [5,6]. For this particular equation it is convenient, but not essential, to

discretize the angular dependence using the method of orthogonal polynomials [14] and the momentum

dependence using a modified Rayleigh–Ritz–Galerkin method [21,22]. The advantage of demonstrating the

techniques by solving the Wick–Cutkosky model is that complications associated with higher spin are

avoided.

Using the numerical techniques presented in the paper, the author has begun obtaining finite-energy
solutions to the scalar electrodynamics model [14,15,32] and to the scalar–scalar model [17–20] when the

bound constituents have either equal or unequal masses. Thus, it is highly likely that the numerical method

discussed here provides a means for obtaining general, finite-energy solutions to many two-body, bound-

state Bethe–Salpeter equations.
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